中日韩va无码中文字幕_亚洲va中文字幕无码久_又粗又大又黄又刺激的免费视频_成年人国产免费网站

二、動(dòng)量定理

        動(dòng)量定理是在動(dòng)力學(xué)基本方程基礎(chǔ)上推到出來的。

動(dòng)量定理建立了(研究對(duì)象)質(zhì)點(diǎn)或質(zhì)點(diǎn)系動(dòng)量的改變與作用在其上的力的沖量之間的關(guān)系,由此還可以得動(dòng)量守恒定律及質(zhì)心運(yùn)動(dòng)定理。

(一)基本概念

       質(zhì)心,動(dòng)量,沖量

1.  質(zhì)心:(引入質(zhì)心,可以將(多個(gè)物體組成)質(zhì)點(diǎn)系當(dāng)做質(zhì)點(diǎn)分析處理問題, 這符合學(xué)習(xí)的循序漸進(jìn),由已知到未知

對(duì)質(zhì)量m=∑mi質(zhì)點(diǎn)系,若其任一質(zhì)點(diǎn)對(duì)某一固定點(diǎn)的矢徑為ri,則由矢徑

所確定的一點(diǎn)c稱為此質(zhì)點(diǎn)系的質(zhì)量中心,簡(jiǎn)稱質(zhì)心。

 

1) 在直角坐標(biāo)系中,質(zhì)心位置矢量各分量的表達(dá)式為:

,

2) 對(duì)于連續(xù)分布的物體,質(zhì)心的計(jì)算公式為:(微元的積分)

分量形式為(xyz軸上的積分形式

,

2.動(dòng)量:是物體某瞬時(shí)機(jī)械運(yùn)動(dòng)的一種度量。以k表示。狀態(tài)量,矢量(方向性)

(1)質(zhì)點(diǎn)的動(dòng)量:質(zhì)點(diǎn)的質(zhì)量m與其速度v的乘積,其表達(dá)式為

k=mv(與速度方向相同,瞬時(shí)量)

 (2)質(zhì)點(diǎn)系的動(dòng)量:各質(zhì)點(diǎn)動(dòng)量的矢量和,其方向與質(zhì)心的速度vc的方向相同,其表達(dá)式為

式中  mi——質(zhì)點(diǎn)系中第i個(gè)質(zhì)點(diǎn)的質(zhì)量;

m=∑mi——質(zhì)點(diǎn)系的質(zhì)量;

       vi——質(zhì)點(diǎn)系中第i個(gè)質(zhì)點(diǎn)的速度;

       vc——質(zhì)點(diǎn)系質(zhì)心c的速度。

    3.沖量:是力在某一段時(shí)間間隔內(nèi)作用效應(yīng)的度量。以s表示。(過程量,矢量

    (1)常力的沖量:s=ft;(與力的方向相同)

   (我們常會(huì)遇到) (2)變力的沖量:。(很小時(shí)間內(nèi),將力看做是恒力)

(二)動(dòng)量定理、質(zhì)心運(yùn)動(dòng)定理

       動(dòng)量定理與質(zhì)心運(yùn)動(dòng)定理的表達(dá)式如下表所示.

動(dòng)量定理的微分形式——?jiǎng)恿W(xué)方程的微分形式(本質(zhì),宏觀低速物體m恒定

     微分形式:動(dòng)量對(duì)時(shí)間的一階倒數(shù)是物體受到的合外力(質(zhì)點(diǎn)系間的內(nèi)力不起作用);

     積分形式:質(zhì)點(diǎn)在一段時(shí)間(t1t2)動(dòng)量的改變等于作用在質(zhì)點(diǎn)的合力在這段時(shí)間內(nèi)的沖量

(這里將狀態(tài)量動(dòng)量和過程量ft聯(lián)系在一起:(計(jì)算中可以靈活應(yīng)用轉(zhuǎn)換思想)過程ft清楚,可以求出過程變化前后兩個(gè)狀態(tài)的動(dòng)量的差;若前后狀態(tài)清楚或者容易獲得,可以求出變力參與的過程量ft,常來解決碰撞問題)

431的式中,為作用在質(zhì)點(diǎn)系上的所有外力的矢量和,即外力系的主矢;

為此外力系在時(shí)間(t2t1)內(nèi)的沖量的矢量和;

k2k1分別為t1 t2時(shí)刻的動(dòng)量;

acvc分別為質(zhì)心的加速度和速度;

腳標(biāo)xy、zτ、n、b分別表示相應(yīng)物理量在直角坐標(biāo)軸和自然軸上的投影。

對(duì)于多個(gè)質(zhì)點(diǎn)組成的質(zhì)點(diǎn)系的運(yùn)動(dòng),我們可以通過觀察質(zhì)心的運(yùn)動(dòng)把握物體的整體運(yùn)動(dòng)(水平上拋三角板;運(yùn)動(dòng)員跳水),所以利用動(dòng)力學(xué)基本方程不難求出質(zhì)心運(yùn)動(dòng)定律,

質(zhì)心運(yùn)動(dòng)定律:研究對(duì)象是多個(gè)質(zhì)點(diǎn)組成的物體。質(zhì)心的運(yùn)動(dòng)代表了整個(gè)物體的運(yùn)動(dòng)情況。即對(duì)質(zhì)心應(yīng)用牛頓第二定律,可以寫出質(zhì)心動(dòng)力學(xué)定律和質(zhì)心的運(yùn)動(dòng)微分方程,可以解決兩類動(dòng)力學(xué)問題。

可以看出:

質(zhì)心運(yùn)動(dòng)守恒定律:(即質(zhì)心不受力或者受力為零質(zhì)點(diǎn)系不受外力作用(或者合外力等于零),保持靜止或者勻速直線運(yùn)動(dòng)。它的矢量形式和直角坐標(biāo)系中的分量見表4-3-1.

(三)例題

      [433]  滑塊c的質(zhì)量m=196kg,在力p=866n的作用下沿傾角為β=30°的導(dǎo)桿ab運(yùn)動(dòng)。已知力p與導(dǎo)桿ab之間的夾角α=45°,滑塊與導(dǎo)桿間的動(dòng)摩擦系數(shù)f’=02,初瞬時(shí)滑塊處于靜止。試求滑塊的速度增大到v=2ms所需的時(shí)間。

      []

由題可以看出,已經(jīng)物塊受力,和部分運(yùn)動(dòng)學(xué)量v等,求運(yùn)動(dòng)時(shí)間。對(duì)于這樣涉及到時(shí)間的動(dòng)力學(xué)問題,我們優(yōu)先考慮動(dòng)量定理。而不考慮動(dòng)力學(xué)基本定律。

(1)選研究對(duì)象  取滑塊c為研究對(duì)象。

      (2)受力分析  滑塊c上受重力mg、導(dǎo)桿對(duì)滑塊c的法向反力nc、摩擦力f及拉力p等四個(gè)力的作用。

(3)運(yùn)動(dòng)分析  滑塊c只能沿導(dǎo)桿ab作直線運(yùn)動(dòng)。選取直角坐標(biāo)bxy如圖4310所示。

(4)應(yīng)用動(dòng)量定理的直角坐標(biāo)形式,設(shè)經(jīng)歷t時(shí)間,則有

即:

動(dòng)量是矢量,注意方向在坐標(biāo)軸上投影的正負(fù)。

由式(2),得

從而,(再由摩擦定律可以求出)動(dòng)摩擦力

代入式(1),求得滑塊的速度從零增到v=2ms所需的時(shí)間

[434]  (下面是關(guān)于質(zhì)點(diǎn)系的動(dòng)力學(xué)問題)

曲柄oa質(zhì)量為m1,長(zhǎng)為r,以勻角速度ωo軸轉(zhuǎn)動(dòng),并帶動(dòng)滑槽連桿以及與連桿固結(jié)的活塞b作往復(fù)運(yùn)動(dòng)?;圻B桿和活塞的總質(zhì)量為m2,作用于活塞上的已知力為q,如果不計(jì)摩擦,求作用于曲柄軸o上的最大水平反力。

【解】  多個(gè)物體的組合,用質(zhì)心動(dòng)力學(xué)方程求解

力與質(zhì)心加速度相關(guān),對(duì)質(zhì)心加速度的求解可以通過以下兩種方法

1)已經(jīng)知道各質(zhì)點(diǎn)的加速度,直接應(yīng)用質(zhì)心公式;2)質(zhì)心位移的二階倒數(shù)

 

該系統(tǒng)包括兩個(gè)物體,曲柄oa和滑槽連桿及固結(jié)在一起的活塞b,只考慮水平方向的運(yùn)動(dòng)。先寫出質(zhì)點(diǎn)系的質(zhì)心在x方向的坐標(biāo)公式,再應(yīng)用質(zhì)心運(yùn)動(dòng)定理求解。

 

 (1)對(duì)象  取曲柄oa、滑槽及活塞b所組成的系統(tǒng)為研究對(duì)象。(質(zhì)點(diǎn)系,對(duì)該質(zhì)點(diǎn)系進(jìn)行受力分析。

 (2)受力分析  作用于系統(tǒng)的水平方向上外力有曲柄軸o處的水平反力x0及作用于活塞上的水平力q。

       (3)運(yùn)動(dòng)分析  由于組成質(zhì)點(diǎn)系的物體為剛體,而且各部分運(yùn)動(dòng)顯為已知,因此用質(zhì)心運(yùn)動(dòng)定理比較方便。取坐標(biāo)系oxy如圖4311所示,設(shè)任意t瞬時(shí),曲柄處于x軸正向,則在水平方向系統(tǒng)的質(zhì)心坐標(biāo)為

(4)應(yīng)用質(zhì)心運(yùn)動(dòng)定理求解

質(zhì)心求出來,對(duì)他求二次導(dǎo)數(shù),得到質(zhì)心運(yùn)動(dòng)的加速度,求出受力。

由質(zhì)心運(yùn)動(dòng)定理可得

則有

將式(1)對(duì)時(shí)間求兩階導(dǎo)數(shù),并代入式(2)得,

當(dāng)ωt=π時(shí),x0達(dá)到最大值,為

[4-3-5小車aq,下懸一擺如圖4312所示。擺按規(guī)律φ=φ0sinkt擺動(dòng),設(shè)擺錘b重為p,擺長(zhǎng)為j,擺桿重量及各處摩擦均忽略不計(jì)。若運(yùn)動(dòng)開始時(shí)系統(tǒng)的質(zhì)心速度等于零,試求小車的運(yùn)動(dòng)方程。

[]  1. 研究對(duì)象:以小車和擺錘所組成的質(zhì)點(diǎn)系為研究對(duì)象。(擺桿重量及各處摩擦均忽略不計(jì),他們水平方向不受外力作用),所以系統(tǒng)水平方向質(zhì)心運(yùn)動(dòng)守恒。

2. 受力分析:作用于該質(zhì)點(diǎn)系上的外力有重力p、q和軌道的鉛垂反力n。選取坐標(biāo)oxy如圖所示,y軸通過系統(tǒng)的質(zhì)心c。

3. 分析運(yùn)動(dòng),選擇坐標(biāo),列動(dòng)力學(xué)方程。

由于作用于該質(zhì)點(diǎn)系上的所有外力在x方向上的投影的代數(shù)和等于零,因此質(zhì)點(diǎn)系的質(zhì)心的運(yùn)動(dòng)沿c方向守恒,即vcx=常量。又因系統(tǒng)原來是靜止的,所以vcx=dxc/dt=0,xc=常量,那么發(fā)生運(yùn)動(dòng)后仍然是靜止的。因此質(zhì)點(diǎn)系的質(zhì)心的水平位置應(yīng)保持不變,由于y軸通過質(zhì)心,故xc=0。當(dāng)擺錘至任意位置時(shí),質(zhì)點(diǎn)系質(zhì)心坐標(biāo)為

 

  由圖示坐標(biāo)關(guān)系得

將式(3)代入式(2)

  (4)即為小車的運(yùn)動(dòng)方程。

以上三個(gè)例題分別對(duì)知識(shí)點(diǎn)動(dòng)量定理,質(zhì)心運(yùn)動(dòng)定理和質(zhì)心運(yùn)動(dòng)守恒的應(yīng)用進(jìn)行了詳解。大家可以針對(duì)性的看看,達(dá)到鞏固知識(shí)的目的。

(四)解題注意事項(xiàng):

1.由于動(dòng)量定理與質(zhì)心運(yùn)動(dòng)定理均由牛頓定律導(dǎo)得,故定理中的運(yùn)動(dòng)量(速度、加速度等)必須是相對(duì)慣性參考系的。

2.受力圖中只需畫出外力,不圖示內(nèi)力,并根據(jù)系統(tǒng)所受的外力來判別系統(tǒng)的動(dòng)量或質(zhì)心的運(yùn)動(dòng)是否守恒。(質(zhì)點(diǎn)系的內(nèi)力遠(yuǎn)大于外力:碰撞,爆炸時(shí),可以用質(zhì)點(diǎn)系的動(dòng)量守恒定律)

3.計(jì)算多剛體系統(tǒng)的動(dòng)量時(shí),可用關(guān)系式

式中  vc為系統(tǒng)質(zhì)心的速度;vici剛體的質(zhì)心速度。具體計(jì)算用它的投影式。

4.應(yīng)用質(zhì)心運(yùn)動(dòng)定理時(shí),可用關(guān)系式

求解系統(tǒng)質(zhì)心的加速度,也可以將質(zhì)心矢徑求兩階導(dǎo)數(shù)得到。一般,當(dāng)多剛體系統(tǒng)的各質(zhì)心加速度容易求得時(shí)用前者較方便。

 

:剎車時(shí),制動(dòng)的原因是什么:

a)制動(dòng)閘和輪子間有摩擦力的原因;

 b)地面對(duì)輪子摩擦力的作用;

 c)制動(dòng)閘和輪子間的摩擦力和地面對(duì)輪子摩擦力共同作用的結(jié)果;

d)不確定

三、動(dòng)量矩定理

矩,與轉(zhuǎn)動(dòng)有關(guān)。質(zhì)點(diǎn)或質(zhì)點(diǎn)系動(dòng)量矩定理建立了質(zhì)點(diǎn)或質(zhì)點(diǎn)系的動(dòng)量矩的變化與作用于其上的外力系主矩之間的關(guān)系,可用以解決動(dòng)力學(xué)兩類問題。

(一)動(dòng)量矩的概念

動(dòng)量矩是某瞬時(shí),質(zhì)點(diǎn)或質(zhì)點(diǎn)系繞某點(diǎn)或某軸轉(zhuǎn)動(dòng)時(shí)機(jī)械運(yùn)動(dòng)強(qiáng)弱的一種度量。其數(shù)學(xué)表達(dá)式分述如下。

1.質(zhì)點(diǎn)對(duì)固定點(diǎn)o的動(dòng)量矩

(類比力矩的定義mo(f)=r×f

式中  r為質(zhì)點(diǎn)對(duì)定點(diǎn)o的矢徑。動(dòng)量矩矢量是定位矢量,應(yīng)畫在o點(diǎn)。其單位是kg·㎡/sn·m·s。

適用于慣性參考系。

2.質(zhì)點(diǎn)系對(duì)固定點(diǎn)o的動(dòng)量矩

3. 質(zhì)點(diǎn)系對(duì)過定點(diǎn)o的正交坐標(biāo)系各軸的動(dòng)量矩

4,定軸轉(zhuǎn)動(dòng)的剛體對(duì)轉(zhuǎn)軸c的動(dòng)量矩(剛體:質(zhì)點(diǎn)系,每個(gè)質(zhì)點(diǎn)對(duì)定軸的動(dòng)量矩之和,化簡(jiǎn)為下式)

,轉(zhuǎn)動(dòng)慣量和角速度的乘積

                                             對(duì)比質(zhì)點(diǎn)的動(dòng)力學(xué)方程:f=ma

(二)轉(zhuǎn)動(dòng)慣量及其平行軸定理

       1.轉(zhuǎn)動(dòng)慣量

  剛體的轉(zhuǎn)動(dòng)慣量是剛體轉(zhuǎn)動(dòng)時(shí)慣性的度量。(質(zhì)量是質(zhì)點(diǎn)慣性的量度,轉(zhuǎn)動(dòng)慣量是質(zhì)點(diǎn)系轉(zhuǎn)動(dòng)時(shí)慣性的量度)其表達(dá)式如表4-3-2所列。

并與剛體的質(zhì)量及質(zhì)量分布有關(guān)。其單位是kg·㎡。

回轉(zhuǎn)半徑(等效半徑,質(zhì)心——質(zhì)點(diǎn)系;回轉(zhuǎn)半徑,剛體轉(zhuǎn)動(dòng)的質(zhì)心。盡管在此說法不嚴(yán)格)并不是剛體上某個(gè)實(shí)際尺寸,而是設(shè)想剛體的質(zhì)量集中在與z軸相距為ρz的點(diǎn)上,此集中質(zhì)量對(duì)z軸的轉(zhuǎn)動(dòng)慣量與剛體對(duì)z軸的轉(zhuǎn)動(dòng)慣量相等。

2.轉(zhuǎn)動(dòng)慣量的平行軸定理

式中,z軸通過質(zhì)心c且與z’軸平行,m是剛體的質(zhì)量,dz’z軸之間的距離。

(三) 動(dòng)量矩定理

質(zhì)點(diǎn)系動(dòng)量矩定理的表達(dá)式隨矩心不同而有所改變,具體列于表4-3-3

4-3-3hcr是在相對(duì)隨質(zhì)心平動(dòng)坐標(biāo)系的運(yùn)動(dòng)中,質(zhì)點(diǎn)系對(duì)質(zhì)心的動(dòng)量矩;∑mc是作用在質(zhì)點(diǎn)系上所有外力對(duì)質(zhì)心的主矩。

動(dòng)量矩和力矩的矢量形式關(guān)系與動(dòng)量和力的關(guān)系等同,僅是對(duì)象剛體和質(zhì)點(diǎn)。大家可以對(duì)比記憶。

(四)剛體平面運(yùn)動(dòng)微分方程

式中  jc是剛體對(duì)通過質(zhì)心且與運(yùn)動(dòng)平面垂直的軸的轉(zhuǎn)動(dòng)慣量。

(五)例題

[4-3-6一軟繩跨在滑輪上,其兩端一為重w的人,一為與人等重的物體。開始時(shí),人與物體均靜止不動(dòng)。令人沿著繩子向上,問人能否上升?物體將上升還足下降?設(shè)滑輪與繩子的質(zhì)量以及軸承中的摩擦力均可略去不計(jì)。

    []

    1.對(duì)象:選整個(gè)系統(tǒng)為研究對(duì)象。

    2.受力分析:作用于此系統(tǒng)上的外力有軸承反力、重力w,顯然這些力對(duì)軸o的矩之和始終為零。

故系統(tǒng)對(duì)z軸的動(dòng)量矩保持守恒。

    3.運(yùn)動(dòng)分析并計(jì)算動(dòng)量矩

    運(yùn)動(dòng)開始時(shí)系統(tǒng)中所有物體處于靜止,系統(tǒng)的動(dòng)量矩為

hzl=0

令人沿著繩子向上,因此,必然要引起重物上升,才能保持系統(tǒng)對(duì)o軸動(dòng)量矩為零。設(shè)某一瞬時(shí),人相對(duì)于繩子的速度為vr,而重物上升的速度為v。注意到重物上升的速度就是繩子中下運(yùn)動(dòng)的速度。

動(dòng)量矩是相對(duì)于慣性參考系,所以速度都是絕對(duì)速度。

因此,人的絕對(duì)速度va=vr-v0。設(shè)滑輪的半徑為r,則此時(shí)系統(tǒng)的動(dòng)量矩為

4.應(yīng)用動(dòng)量矩定理求解

由于系統(tǒng)對(duì)c軸動(dòng)量矩守恒,故有

解得

  同時(shí)得到

由此可見,人與重物以相同的速度上升;并且看到,在任何瞬時(shí),重物上升的速度總是等于人相對(duì)于繩子的速度的一半。

 

[437]  一飛輪由直流電機(jī)帶動(dòng),已知電機(jī)產(chǎn)生的轉(zhuǎn)矩m與其角速度的關(guān)系為:m=m1(1ω/ω1)。式中,ml表示電機(jī)的起動(dòng)轉(zhuǎn)矩,w1叫表示電機(jī)無負(fù)載時(shí)空轉(zhuǎn)角速度,且m1ω1都是已知量。設(shè)飛輪對(duì)o軸的轉(zhuǎn)動(dòng)慣量為j0,作用在飛輪上的阻力矩mf為常量,如圖4321所示。當(dāng)m>mf時(shí),飛輪開始起動(dòng),求角速度o隨時(shí)間t的變化規(guī)律。

[本題為已知作用于飛輪上的力矩mmf,求飛輪的轉(zhuǎn)動(dòng)規(guī)律,屬動(dòng)力學(xué)第二類問題。

可根據(jù)剛體繞定軸轉(zhuǎn)動(dòng)的微分方程,通過積分求得飛輪的角速度ω。

1對(duì)象  以飛輪為研究對(duì)象。

2受力分析  飛輪上作用的外力有力矩mmf,約束反力x0y0和重力w。

3運(yùn)動(dòng)分析  飛輪作定軸轉(zhuǎn)動(dòng)。取順時(shí)針轉(zhuǎn)向?yàn)檎?/span>

4建立動(dòng)力學(xué)方程,并解之。

應(yīng)用定軸轉(zhuǎn)動(dòng)微分方程列方程如下:

將已知轉(zhuǎn)矩代入式(1),得

 

 

常數(shù)a,b  

則上式可簡(jiǎn)化成

將上式分離變量,并進(jìn)行積分運(yùn)算,因運(yùn)動(dòng)初始條件t=0時(shí)ω=0,則有

解得飛輪的角速度為

根據(jù)題意m>mf,由式(1)可知飛輪作加速轉(zhuǎn)動(dòng);又由式(3)可見;飛輪角速度將逐漸增大;當(dāng)t—無窮時(shí),式(3)括號(hào)內(nèi)的,這時(shí)飛輪將以極限角速度ωm轉(zhuǎn)動(dòng),且

如不加負(fù)載,阻力矩mf=0,則極限角速度為

ωm1